Artificial General Intelligence
Artificial basic intelligence (AGI) is a kind of expert system (AI) that matches or surpasses human cognitive capabilities throughout a large range of cognitive jobs. This contrasts with narrow AI, which is restricted to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that significantly goes beyond human cognitive abilities. AGI is thought about one of the definitions of strong AI.
Creating AGI is a main goal of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 study determined 72 active AGI research study and advancement tasks throughout 37 nations. [4]
The timeline for achieving AGI remains a topic of continuous argument amongst researchers and specialists. Since 2023, some argue that it may be possible in years or years; others keep it might take a century or longer; a minority think it might never be achieved; and another minority claims that it is already here. [5] [6] Notable AI researcher Geoffrey Hinton has actually expressed concerns about the fast progress towards AGI, recommending it could be attained quicker than many anticipate. [7]
There is dispute on the specific definition of AGI and relating to whether modern-day big language models (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a common subject in sci-fi and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many experts on AI have actually stated that mitigating the danger of human extinction postured by AGI ought to be an international top priority. [14] [15] Others discover the advancement of AGI to be too remote to present such a risk. [16] [17]
Terminology
AGI is likewise called strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or general intelligent action. [21]
Some scholastic sources schedule the term "strong AI" for computer system programs that experience sentience or awareness. [a] On the other hand, weak AI (or narrow AI) is able to resolve one specific issue but does not have basic cognitive abilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the very same sense as people. [a]
Related principles include synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical type of AGI that is far more usually smart than humans, [23] while the notion of transformative AI associates with AI having a big effect on society, for example, similar to the agricultural or industrial revolution. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify 5 levels of AGI: emerging, competent, specialist, virtuoso, and superhuman. For example, a proficient AGI is specified as an AI that surpasses 50% of competent adults in a wide range of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is similarly defined however with a limit of 100%. They consider big language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have been proposed. One of the leading proposals is the Turing test. However, there are other popular definitions, and some researchers disagree with the more popular methods. [b]
Intelligence traits
Researchers typically hold that intelligence is required to do all of the following: [27]
factor, use strategy, fix puzzles, and make judgments under uncertainty
represent knowledge, consisting of sound judgment knowledge
strategy
learn
- interact in natural language
- if required, incorporate these abilities in completion of any given goal
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and choice making) consider extra characteristics such as creativity (the capability to form unique psychological images and principles) [28] and autonomy. [29]
Computer-based systems that exhibit numerous of these abilities exist (e.g. see computational creativity, automated thinking, choice support system, robot, evolutionary computation, intelligent representative). There is debate about whether contemporary AI systems possess them to a sufficient degree.
Physical characteristics
Other capabilities are thought about desirable in smart systems, as they may affect intelligence or aid in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, and so on), and - the capability to act (e.g. relocation and manipulate items, modification place to check out, etc).
This consists of the capability to detect and react to hazard. [31]
Although the ability to sense (e.g. see, hear, and so on) and the ability to act (e.g. relocation and manipulate items, modification place to check out, and so on) can be preferable for some intelligent systems, [30] these physical abilities are not strictly required for an entity to qualify as AGI-particularly under the thesis that large (LLMs) might currently be or end up being AGI. Even from a less optimistic perspective on LLMs, there is no firm requirement for an AGI to have a human-like kind; being a silicon-based computational system is enough, provided it can process input (language) from the external world in location of human senses. This interpretation aligns with the understanding that AGI has actually never ever been proscribed a particular physical personification and therefore does not require a capacity for mobility or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests meant to verify human-level AGI have actually been thought about, consisting of: [33] [34]
The idea of the test is that the maker has to try and pretend to be a man, by addressing concerns put to it, and it will only pass if the pretence is reasonably persuading. A significant part of a jury, who need to not be expert about machines, must be taken in by the pretence. [37]
AI-complete issues
An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to fix it, one would need to execute AGI, due to the fact that the solution is beyond the capabilities of a purpose-specific algorithm. [47]
There are numerous issues that have been conjectured to require general intelligence to resolve in addition to human beings. Examples include computer vision, natural language understanding, and handling unanticipated scenarios while fixing any real-world issue. [48] Even a particular job like translation requires a maker to read and compose in both languages, follow the author's argument (reason), comprehend the context (knowledge), and faithfully recreate the author's initial intent (social intelligence). All of these problems need to be solved all at once in order to reach human-level device efficiency.
However, a number of these jobs can now be performed by contemporary large language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on lots of standards for checking out understanding and visual thinking. [49]
History
Classical AI
Modern AI research study started in the mid-1950s. [50] The very first generation of AI scientists were encouraged that synthetic basic intelligence was possible and that it would exist in just a few decades. [51] AI pioneer Herbert A. Simon wrote in 1965: "makers will be capable, within twenty years, of doing any work a guy can do." [52]
Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they might develop by the year 2001. AI pioneer Marvin Minsky was a consultant [53] on the job of making HAL 9000 as sensible as possible according to the consensus predictions of the time. He stated in 1967, "Within a generation ... the issue of creating 'expert system' will considerably be resolved". [54]
Several classical AI jobs, such as Doug Lenat's Cyc project (that started in 1984), and Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, it ended up being obvious that researchers had grossly ignored the problem of the task. Funding agencies became doubtful of AGI and put scientists under increasing pressure to produce helpful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI goals like "continue a table talk". [58] In action to this and the success of specialist systems, both market and federal government pumped cash into the field. [56] [59] However, confidence in AI marvelously collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never satisfied. [60] For the second time in 20 years, AI scientists who forecasted the imminent achievement of AGI had been misinterpreted. By the 1990s, AI researchers had a track record for making vain guarantees. They became reluctant to make forecasts at all [d] and prevented mention of "human level" synthetic intelligence for fear of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI achieved industrial success and scholastic respectability by focusing on specific sub-problems where AI can produce proven outcomes and industrial applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now utilized extensively throughout the innovation industry, and research study in this vein is heavily funded in both academic community and market. Since 2018 [update], development in this field was considered an emerging pattern, and a mature stage was expected to be reached in more than ten years. [64]
At the millenium, lots of traditional AI scientists [65] hoped that strong AI could be developed by integrating programs that resolve various sub-problems. Hans Moravec composed in 1988:
I am confident that this bottom-up path to artificial intelligence will one day meet the conventional top-down route more than half way, ready to supply the real-world proficiency and the commonsense knowledge that has actually been so frustratingly elusive in thinking programs. Fully intelligent machines will result when the metaphorical golden spike is driven joining the two efforts. [65]
However, even at the time, this was contested. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by mentioning:
The expectation has actually often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way meet "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper stand, then this expectation is hopelessly modular and there is really just one practical route from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer will never be reached by this route (or vice versa) - nor is it clear why we must even attempt to reach such a level, since it looks as if arriving would simply total up to uprooting our signs from their intrinsic significances (thereby simply reducing ourselves to the practical equivalent of a programmable computer). [66]
Modern artificial general intelligence research
The term "artificial general intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the ramifications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the capability to please objectives in a wide variety of environments". [68] This kind of AGI, characterized by the ability to maximise a mathematical definition of intelligence rather than display human-like behaviour, [69] was likewise called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The first summer school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was provided in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and featuring a variety of guest lecturers.
Since 2023 [update], a small number of computer system researchers are active in AGI research study, and lots of add to a series of AGI conferences. However, significantly more researchers have an interest in open-ended learning, [76] [77] which is the concept of permitting AI to continuously discover and innovate like people do.
Feasibility
Since 2023, the development and potential achievement of AGI stays a topic of extreme argument within the AI community. While conventional consensus held that AGI was a far-off objective, recent advancements have actually led some researchers and market figures to claim that early types of AGI might already exist. [78] AI leader Herbert A. Simon speculated in 1965 that "makers will be capable, within twenty years, of doing any work a male can do". This forecast failed to come true. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century because it would require "unforeseeable and fundamentally unpredictable developments" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf in between modern computing and human-level synthetic intelligence is as large as the gulf between existing area flight and useful faster-than-light spaceflight. [80]
An additional difficulty is the lack of clarity in specifying what intelligence entails. Does it need consciousness? Must it display the capability to set goals as well as pursue them? Is it purely a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are facilities such as preparation, thinking, and causal understanding required? Does intelligence need clearly duplicating the brain and its specific professors? Does it need feelings? [81]
Most AI scientists think strong AI can be attained in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of attaining strong AI. [82] [83] John McCarthy is among those who think human-level AI will be achieved, however that the present level of progress is such that a date can not properly be predicted. [84] AI experts' views on the feasibility of AGI wax and wane. Four polls performed in 2012 and 2013 suggested that the typical estimate amongst experts for when they would be 50% positive AGI would arrive was 2040 to 2050, depending on the survey, with the mean being 2081. Of the specialists, 16.5% responded to with "never" when asked the very same question however with a 90% confidence instead. [85] [86] Further current AGI progress considerations can be discovered above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year amount of time there is a strong bias towards forecasting the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They evaluated 95 forecasts made between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft researchers published a detailed evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we believe that it could fairly be considered as an early (yet still insufficient) variation of an artificial general intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outperforms 99% of people on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of basic intelligence has already been attained with frontier models. They composed that hesitation to this view comes from 4 main factors: a "healthy uncertainty about metrics for AGI", an "ideological commitment to alternative AI theories or strategies", a "devotion to human (or biological) exceptionalism", or a "concern about the economic implications of AGI". [91]
2023 also marked the introduction of big multimodal models (large language models efficient in processing or producing several techniques such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the very first of a series of designs that "invest more time thinking before they react". According to Mira Murati, this ability to think before reacting represents a new, additional paradigm. It enhances model outputs by investing more computing power when creating the response, whereas the design scaling paradigm improves outputs by increasing the design size, training data and training calculate power. [93] [94]
An OpenAI staff member, Vahid Kazemi, claimed in 2024 that the company had actually attained AGI, mentioning, "In my viewpoint, we have actually already accomplished AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any task", it is "much better than a lot of human beings at the majority of tasks." He also dealt with criticisms that large language designs (LLMs) simply follow predefined patterns, comparing their knowing process to the clinical technique of observing, hypothesizing, and confirming. These declarations have actually sparked dispute, as they rely on a broad and non-traditional meaning of AGI-traditionally understood as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models show remarkable adaptability, they might not completely satisfy this requirement. Notably, Kazemi's comments came quickly after OpenAI got rid of "AGI" from the terms of its collaboration with Microsoft, prompting speculation about the company's strategic objectives. [95]
Timescales
Progress in synthetic intelligence has actually historically gone through durations of rapid development separated by durations when progress appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software application or both to produce space for more progress. [82] [98] [99] For instance, the hardware available in the twentieth century was not enough to carry out deep knowing, which requires large numbers of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that quotes of the time required before a truly flexible AGI is developed vary from 10 years to over a century. As of 2007 [upgrade], the agreement in the AGI research study community appeared to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was plausible. [103] Mainstream AI researchers have given a wide variety of viewpoints on whether development will be this rapid. A 2012 meta-analysis of 95 such viewpoints found a bias towards predicting that the onset of AGI would happen within 16-26 years for modern-day and historical predictions alike. That paper has been slammed for how it categorized viewpoints as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test mistake rate of 15.3%, considerably better than the second-best entry's rate of 26.3% (the conventional technique used a weighted sum of scores from various pre-defined classifiers). [105] AlexNet was considered as the preliminary ground-breaker of the current deep knowing wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on openly offered and easily available weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old child in very first grade. A grownup pertains to about 100 on average. Similar tests were performed in 2014, with the IQ rating reaching an optimum value of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language design capable of carrying out numerous diverse tasks without specific training. According to Gary Grossman in a VentureBeat post, while there is consensus that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be categorized as a narrow AI system. [108]
In the very same year, Jason Rohrer used his GPT-3 account to establish a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI asked for changes to the chatbot to adhere to their safety standards; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system capable of performing more than 600 various jobs. [110]
In 2023, Microsoft Research published a research study on an early variation of OpenAI's GPT-4, competing that it exhibited more basic intelligence than previous AI models and showed human-level efficiency in tasks spanning multiple domains, such as mathematics, coding, and law. This research study sparked an argument on whether GPT-4 might be considered an early, insufficient version of synthetic general intelligence, stressing the need for additional exploration and evaluation of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton specified that: [112]
The idea that this stuff might really get smarter than people - a couple of people believed that, [...] But the majority of individuals thought it was method off. And I believed it was way off. I thought it was 30 to 50 years and even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis similarly stated that "The development in the last couple of years has actually been quite incredible", and that he sees no reason that it would slow down, anticipating AGI within a decade or perhaps a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within five years, AI would can passing any test at least as well as human beings. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI staff member, estimated AGI by 2027 to be "noticeably possible". [115]
Whole brain emulation
While the development of transformer designs like in ChatGPT is thought about the most promising course to AGI, [116] [117] whole brain emulation can serve as an alternative method. With entire brain simulation, a brain model is developed by scanning and mapping a biological brain in information, and after that copying and imitating it on a computer system or another computational gadget. The simulation model need to be adequately loyal to the original, so that it behaves in practically the very same way as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research study functions. It has actually been gone over in expert system research [103] as an approach to strong AI. Neuroimaging technologies that could provide the needed in-depth understanding are improving quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of sufficient quality will appear on a similar timescale to the computing power needed to emulate it.
Early approximates
For low-level brain simulation, a very effective cluster of computer systems or GPUs would be required, offered the massive quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number declines with age, supporting by their adult years. Estimates differ for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based upon a simple switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at various quotes for the hardware required to equal the human brain and adopted a figure of 1016 computations per 2nd (cps). [e] (For comparison, if a "computation" was equivalent to one "floating-point operation" - a step utilized to rate existing supercomputers - then 1016 "computations" would be comparable to 10 petaFLOPS, achieved in 2011, while 1018 was achieved in 2022.) He used this figure to forecast the needed hardware would be available at some point in between 2015 and 2025, if the rapid development in computer power at the time of writing continued.
Current research
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has developed a particularly comprehensive and openly accessible atlas of the human brain. [124] In 2023, scientists from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based methods
The artificial nerve cell design assumed by Kurzweil and used in many present artificial neural network applications is simple compared with biological nerve cells. A brain simulation would likely need to capture the in-depth cellular behaviour of biological neurons, presently understood only in broad summary. The overhead presented by complete modeling of the biological, chemical, and physical details of neural behaviour (specifically on a molecular scale) would require computational powers numerous orders of magnitude bigger than Kurzweil's price quote. In addition, the estimates do not represent glial cells, which are understood to play a function in cognitive processes. [125]
A basic criticism of the simulated brain technique stems from embodied cognition theory which asserts that human personification is an essential aspect of human intelligence and is required to ground significance. [126] [127] If this theory is right, any completely functional brain design will need to incorporate more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as a choice, however it is unknown whether this would be sufficient.
Philosophical viewpoint
"Strong AI" as specified in philosophy
In 1980, thinker John Searle created the term "strong AI" as part of his Chinese room argument. [128] He proposed a distinction between two hypotheses about synthetic intelligence: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness". Weak AI hypothesis: An expert system system can (just) act like it thinks and has a mind and awareness.
The first one he called "strong" due to the fact that it makes a stronger statement: it assumes something unique has actually happened to the device that surpasses those capabilities that we can test. The behaviour of a "weak AI" machine would be exactly similar to a "strong AI" maker, but the latter would also have subjective conscious experience. This use is also common in academic AI research study and textbooks. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil use the term "strong AI" to indicate "human level synthetic general intelligence". [102] This is not the exact same as Searle's strong AI, unless it is presumed that awareness is necessary for human-level AGI. Academic philosophers such as Searle do not think that is the case, and to most expert system scientists the concern is out-of-scope. [130]
Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to understand if it actually has mind - certainly, there would be no other way to inform. For AI research study, Searle's "weak AI hypothesis" is comparable to the statement "artificial basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for granted, and annunciogratis.net don't care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are 2 different things.
Consciousness
Consciousness can have numerous meanings, and some elements play substantial functions in sci-fi and the ethics of artificial intelligence:
Sentience (or "phenomenal awareness"): The ability to "feel" understandings or feelings subjectively, rather than the ability to factor about perceptions. Some theorists, such as David Chalmers, use the term "awareness" to refer exclusively to remarkable consciousness, which is roughly equivalent to sentience. [132] Determining why and how subjective experience occurs is understood as the difficult issue of consciousness. [133] Thomas Nagel described in 1974 that it "seems like" something to be conscious. If we are not mindful, then it doesn't feel like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it seem like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has awareness) but a toaster does not. [134] In 2022, a Google engineer declared that the business's AI chatbot, LaMDA, had actually achieved sentience, though this claim was widely contested by other experts. [135]
Self-awareness: To have conscious awareness of oneself as a separate individual, particularly to be purposely familiar with one's own thoughts. This is opposed to merely being the "topic of one's thought"-an operating system or debugger has the ability to be "mindful of itself" (that is, to represent itself in the same method it represents everything else)-however this is not what individuals normally imply when they utilize the term "self-awareness". [g]
These characteristics have a moral dimension. AI life would generate concerns of well-being and legal security, similarly to animals. [136] Other elements of awareness related to cognitive capabilities are also relevant to the idea of AI rights. [137] Figuring out how to integrate advanced AI with existing legal and social frameworks is an emergent issue. [138]
Benefits
AGI might have a variety of applications. If oriented towards such objectives, AGI might assist mitigate numerous issues on the planet such as hunger, hardship and health problems. [139]
AGI could enhance efficiency and performance in the majority of jobs. For instance, in public health, AGI might accelerate medical research, significantly against cancer. [140] It might take care of the senior, [141] and democratize access to fast, top quality medical diagnostics. It could use fun, cheap and tailored education. [141] The requirement to work to subsist could end up being obsolete if the wealth produced is appropriately redistributed. [141] [142] This likewise raises the concern of the place of human beings in a significantly automated society.
AGI might also assist to make logical decisions, and to prepare for and prevent catastrophes. It might also assist to profit of potentially disastrous technologies such as nanotechnology or environment engineering, while preventing the associated threats. [143] If an AGI's primary goal is to avoid existential disasters such as human termination (which might be difficult if the Vulnerable World Hypothesis ends up being real), [144] it might take procedures to significantly decrease the threats [143] while minimizing the impact of these procedures on our lifestyle.
Risks
Existential threats
AGI may represent multiple types of existential threat, which are risks that threaten "the premature termination of Earth-originating intelligent life or the permanent and extreme destruction of its capacity for desirable future advancement". [145] The risk of human extinction from AGI has been the topic of numerous arguments, but there is likewise the possibility that the advancement of AGI would result in a completely problematic future. Notably, it might be utilized to spread and preserve the set of values of whoever develops it. If mankind still has moral blind areas similar to slavery in the past, AGI might irreversibly entrench it, avoiding moral development. [146] Furthermore, AGI might facilitate mass surveillance and brainwashing, which could be utilized to produce a stable repressive worldwide totalitarian regime. [147] [148] There is also a risk for the devices themselves. If makers that are sentient or otherwise worthy of moral factor to consider are mass developed in the future, engaging in a civilizational path that indefinitely disregards their welfare and interests might be an existential disaster. [149] [150] Considering how much AGI could enhance humanity's future and aid decrease other existential threats, Toby Ord calls these existential risks "an argument for continuing with due care", not for "abandoning AI". [147]
Risk of loss of control and human termination
The thesis that AI positions an existential danger for humans, and that this threat needs more attention, is questionable however has actually been endorsed in 2023 by lots of public figures, AI researchers and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed prevalent indifference:
So, facing possible futures of enormous benefits and dangers, the experts are undoubtedly doing whatever possible to ensure the finest result, right? Wrong. If a superior alien civilisation sent us a message stating, 'We'll get here in a few years,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is taking place with AI. [153]
The potential fate of humankind has sometimes been compared to the fate of gorillas threatened by human activities. The contrast mentions that greater intelligence permitted humanity to control gorillas, which are now susceptible in ways that they might not have actually anticipated. As an outcome, the gorilla has ended up being a threatened species, not out of malice, however just as a civilian casualties from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate mankind which we must take care not to anthropomorphize them and translate their intents as we would for human beings. He stated that individuals won't be "wise enough to design super-intelligent machines, yet ridiculously dumb to the point of providing it moronic objectives with no safeguards". [155] On the other side, the concept of instrumental convergence suggests that almost whatever their objectives, intelligent representatives will have reasons to try to make it through and get more power as intermediary steps to accomplishing these objectives. And that this does not need having feelings. [156]
Many scholars who are concerned about existential threat advocate for more research into fixing the "control problem" to respond to the concern: what kinds of safeguards, algorithms, or architectures can programmers carry out to maximise the likelihood that their recursively-improving AI would continue to behave in a friendly, rather than destructive, way after it reaches superintelligence? [157] [158] Solving the control problem is complicated by the AI arms race (which could cause a race to the bottom of security precautions in order to release products before rivals), [159] and making use of AI in weapon systems. [160]
The thesis that AI can present existential risk likewise has detractors. Skeptics normally state that AGI is unlikely in the short-term, or that concerns about AGI distract from other concerns related to current AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for lots of individuals beyond the innovation market, existing chatbots and LLMs are currently perceived as though they were AGI, causing additional misunderstanding and fear. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence changing an illogical belief in a supreme God. [163] Some researchers believe that the communication campaigns on AI existential threat by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulative capture and to pump up interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other industry leaders and scientists, provided a joint statement asserting that "Mitigating the risk of termination from AI should be a worldwide concern together with other societal-scale threats such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI approximated that "80% of the U.S. labor force could have at least 10% of their work tasks affected by the introduction of LLMs, while around 19% of workers may see at least 50% of their tasks affected". [166] [167] They think about workplace workers to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI might have a better autonomy, capability to make choices, to user interface with other computer tools, however likewise to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the lifestyle will depend upon how the wealth will be redistributed: [142]
Everyone can enjoy a life of luxurious leisure if the machine-produced wealth is shared, or the majority of people can wind up miserably poor if the machine-owners successfully lobby against wealth redistribution. So far, the trend appears to be toward the second choice, with innovation driving ever-increasing inequality
Elon Musk thinks about that the automation of society will require governments to adopt a universal standard earnings. [168]
See likewise
Artificial brain - Software and hardware with cognitive capabilities similar to those of the animal or human brain AI effect AI security - Research location on making AI safe and beneficial AI alignment - AI conformance to the intended objective A.I. Rising - 2018 movie directed by Lazar Bodroža Artificial intelligence Automated artificial intelligence - Process of automating the application of maker knowing BRAIN Initiative - Collaborative public-private research study initiative announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General video game playing - Ability of expert system to play different video games Generative expert system - AI system capable of producing material in reaction to triggers Human Brain Project - Scientific research task Intelligence amplification - Use of infotech to enhance human intelligence (IA). Machine principles - Moral behaviours of manufactured devices. Moravec's paradox. Multi-task learning - Solving multiple machine discovering jobs at the exact same time. Neural scaling law - Statistical law in device knowing. Outline of expert system - Overview of and topical guide to expert system. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or type of artificial intelligence. Transfer learning - Machine knowing strategy. Loebner Prize - Annual AI competitors. Hardware for synthetic intelligence - Hardware specially created and optimized for expert system. Weak artificial intelligence - Form of expert system.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the academic meaning of "strong AI" and weak AI in the short article Chinese room. ^ AI founder John McCarthy writes: "we can not yet define in general what sort of computational treatments we desire to call smart. " [26] (For a conversation of some meanings of intelligence used by synthetic intelligence researchers, see philosophy of artificial intelligence.). ^ The Lighthill report particularly criticized AI's "grandiose objectives" and led the taking apart of AI research study in England. [55] In the U.S., DARPA ended up being figured out to fund only "mission-oriented direct research study, instead of basic undirected research". [56] [57] ^ As AI founder John McCarthy composes "it would be an excellent relief to the remainder of the employees in AI if the inventors of new basic formalisms would reveal their hopes in a more protected kind than has actually in some cases held true." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As defined in a basic AI book: "The assertion that devices could potentially act wisely (or, perhaps better, act as if they were smart) is called the 'weak AI' hypothesis by philosophers, and the assertion that machines that do so are really believing (as opposed to imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to carry out a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to ensure that synthetic basic intelligence advantages all of humanity. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new objective is producing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were determined as being active in 2020. ^ a b c "AI timelines: forum.pinoo.com.tr What do experts in expert system expect for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI pioneer Geoffrey Hinton gives up Google and cautions of danger ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can prevent the bad actors from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York Times. The real risk is not AI itself but the method we release it. ^ "Impressed by artificial intelligence? Experts state AGI is coming next, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could present existential dangers to humankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last innovation that mankind needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the threat of termination from AI need to be a global priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists warn of danger of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from producing machines that can outthink us in basic ways. ^ LeCun, Yann (June 2023). "AGI does not provide an existential risk". Medium. There is no factor to fear AI as an existential risk. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil describes strong AI as "maker intelligence with the full variety of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is transforming our world - it is on all of us to make certain that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent qualities is based upon the topics covered by major AI books, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the way we think: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reconsidered: The idea of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reconsidered: The concept of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real kid - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists challenge whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar exam to AP Biology. Here's a list of tough tests both AI variations have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is outdated. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended testing an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), priced estimate in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software application engineers prevented the term expert system for fear of being seen as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of maker intelligence: Despite progress in machine intelligence, artificial general intelligence is still a significant difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not turn into a Frankenstein's monster". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will artificial intelligence bring us paradise or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in synthetic intelligence: A survey of skilled viewpoint. In Fundamental concerns of synthetic intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as clever as Siri - but a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're entering the AI golden zone in between narrow and general AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are already seeing an early example of an AGI system in the just recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is debatable, but the agreement is that it is not AGI. ... If absolutely nothing else, GPT-3 tells us there is a middle ground between narrow and basic AI. ^ Quach, Katyanna. "A designer constructed an AI chatbot using GPT-3 that assisted a guy speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can perform over 600 jobs, from playing games to managing robots", TechCrunch, archived from the initial on 16 June 2022, obtained 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. might equal human intelligence in 'just a few years,' states CEO of Google's main A.I. research study laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI could pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, king-wifi.win The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody seems to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research job maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A vast array of views in current research, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How submitting our minds to a computer may end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced quote in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for curiosity by the field about why a program behaves the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the company's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost surpass benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Benefit from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, risks, strategies (Reprinted with corrections 2017 ed.). Oxford, UK; New York City, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that people will damage ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security threat' to Australia, Senate questions says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the implications of synthetic intelligence - but are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI". The interesting Facebook debate in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI threat: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report warns". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over threat positioned but artificial intelligence can not be ignored". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking fears over AI, warn researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator prawattasao.awardspace.info states huge tech is lying about AI extinction risk". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early look at the labor market impact potential of large language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of workers might see their jobs affected by AI. These are the jobs most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we require universal standard earnings because 'in the future, physical work will be an option'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial basic intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, recovered 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, retrieved 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Point of view, archived from the initial on 17 August 2007, retrieved 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Artificial Intelligence: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The ultimate effort is to make computer system programs that can solve problems and achieve goals on the planet in addition to humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, recovered 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Sensible Approach, New York City: Oxford University Press, archived from the original on 25 July 2009, obtained 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, recovered 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, recovered 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - via ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, retrieved 4 September 2013 - by means of ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, retrieved 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what might be called "Dyson's Law") that "Any system basic sufficient to be easy to understand will not be complicated enough to act smartly, while any system complicated enough to act smartly will be too made complex to comprehend." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead easy stupid. They work, however they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Will" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what distinguishes us from machines. For biological creatures, reason and function originate from acting in the world and experiencing the effects. Expert systems - disembodied, complete strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically anticipate that those who intend to get abundant from AI are going to have the interests of the rest people close at heart,' ... writes [Gary Marcus] 'We can't rely on governments driven by campaign financing contributions [from tech companies] to press back.' ... Marcus information the needs that people need to make from their governments and the tech companies. They include openness on how AI systems work; compensation for individuals if their information [are] utilized to train LLMs (large language design) s and the right to approval to this usage; and the ability to hold tech companies responsible for the damages they trigger by getting rid of Section 230, enforcing cash penalites, and passing more stringent product liability laws ... Marcus also recommends ... that a new, AI-specific federal firm, akin to the FDA, the FCC, or the FTC, might provide the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... recommends ... develop [ing] a professional licensing program for engineers that would work in a comparable way to medical licenses, malpractice matches, and the Hippocratic oath in medicine. 'What if, like physicians,' she asks ..., 'AI engineers also pledged to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually puzzled humans for years, mariskamast.net exposes the restrictions of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competition has actually exposed that although NLP (natural-language processing) designs can amazing tasks, their abilities are really much restricted by the amount of context they receive. This [...] might cause [troubles] for researchers who intend to use them to do things such as examine ancient languages. Sometimes, there are few historic records on long-gone civilizations to serve as training data for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to generate phony videos equivalent from genuine ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we imply sensible videos produced using synthetic intelligence that actually deceive individuals, then they hardly exist. The phonies aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in basic, bphomesteading.com running in our media as counterfeited evidence. Their role better looks like that of animations, specifically smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: archmageriseswiki.com We should prevent humanizing machine-learning models used in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a maker a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of synthetic general intelligence are stymmied by the usual problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, recovered 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, presented and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead authorities to ignore inconsistent evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but showed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at tasks that need genuine humanlike thinking or an understanding of the physical and social world ... ChatGPT appeared unable to reason realistically and attempted to count on its large database of ... truths stemmed from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are powerful but undependable. Rules-based systems can not handle situations their programmers did not expect. Learning systems are limited by the information on which they were trained. AI failures have currently caused catastrophe. Advanced auto-pilot features in automobiles, although they carry out well in some scenarios, have actually driven vehicles without alerting into trucks, concrete barriers, and parked cars. In the incorrect circumstance, AI systems go from supersmart to superdumb in an instant. When an enemy is attempting to manipulate and hack an AI system, the dangers are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by brand-new technologies but count on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.